1   /*
2    * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
3    * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4    *
5    * This code is free software; you can redistribute it and/or modify it
6    * under the terms of the GNU General Public License version 2 only, as
7    * published by the Free Software Foundation.  Oracle designates this
8    * particular file as subject to the "Classpath" exception as provided
9    * by Oracle in the LICENSE file that accompanied this code.
10   *
11   * This code is distributed in the hope that it will be useful, but WITHOUT
12   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14   * version 2 for more details (a copy is included in the LICENSE file that
15   * accompanied this code).
16   *
17   * You should have received a copy of the GNU General Public License version
18   * 2 along with this work; if not, write to the Free Software Foundation,
19   * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20   *
21   * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22   * or visit www.oracle.com if you need additional information or have any
23   * questions.
24   */
25  
26  package sun.java2d.pisces;
27  
28  import sun.awt.geom.PathConsumer2D;
29  
30  /**
31   * The <code>Dasher</code> class takes a series of linear commands
32   * (<code>moveTo</code>, <code>lineTo</code>, <code>close</code> and
33   * <code>end</code>) and breaks them into smaller segments according to a
34   * dash pattern array and a starting dash phase.
35   *
36   * <p> Issues: in J2Se, a zero length dash segment as drawn as a very
37   * short dash, whereas Pisces does not draw anything.  The PostScript
38   * semantics are unclear.
39   *
40   */
41  final class Dasher implements sun.awt.geom.PathConsumer2D {
42  
43      private final PathConsumer2D out;
44      private final float[] dash;
45      private final float startPhase;
46      private final boolean startDashOn;
47      private final int startIdx;
48  
49      private boolean starting;
50      private boolean needsMoveTo;
51  
52      private int idx;
53      private boolean dashOn;
54      private float phase;
55  
56      private float sx, sy;
57      private float x0, y0;
58  
59      // temporary storage for the current curve
60      private float[] curCurvepts;
61  
62      /**
63       * Constructs a <code>Dasher</code>.
64       *
65       * @param out an output <code>PathConsumer2D</code>.
66       * @param dash an array of <code>float</code>s containing the dash pattern
67       * @param phase a <code>float</code> containing the dash phase
68       */
69      public Dasher(PathConsumer2D out, float[] dash, float phase) {
70          if (phase < 0) {
71              throw new IllegalArgumentException("phase < 0 !");
72          }
73  
74          this.out = out;
75  
76          // Normalize so 0 <= phase < dash[0]
77          int idx = 0;
78          dashOn = true;
79          float d;
80          while (phase >= (d = dash[idx])) {
81              phase -= d;
82              idx = (idx + 1) % dash.length;
83              dashOn = !dashOn;
84          }
85  
86          this.dash = dash;
87          this.startPhase = this.phase = phase;
88          this.startDashOn = dashOn;
89          this.startIdx = idx;
90          this.starting = true;
91  
92          // we need curCurvepts to be able to contain 2 curves because when
93          // dashing curves, we need to subdivide it
94          curCurvepts = new float[8 * 2];
95      }
96  
97      public void moveTo(float x0, float y0) {
98          if (firstSegidx > 0) {
99              out.moveTo(sx, sy);
100             emitFirstSegments();
101         }
102         needsMoveTo = true;
103         this.idx = startIdx;
104         this.dashOn = this.startDashOn;
105         this.phase = this.startPhase;
106         this.sx = this.x0 = x0;
107         this.sy = this.y0 = y0;
108         this.starting = true;
109     }
110 
111     private void emitSeg(float[] buf, int off, int type) {
112         switch (type) {
113         case 8:
114             out.curveTo(buf[off+0], buf[off+1],
115                         buf[off+2], buf[off+3],
116                         buf[off+4], buf[off+5]);
117             break;
118         case 6:
119             out.quadTo(buf[off+0], buf[off+1],
120                        buf[off+2], buf[off+3]);
121             break;
122         case 4:
123             out.lineTo(buf[off], buf[off+1]);
124         }
125     }
126 
127     private void emitFirstSegments() {
128         for (int i = 0; i < firstSegidx; ) {
129             emitSeg(firstSegmentsBuffer, i+1, (int)firstSegmentsBuffer[i]);
130             i += (((int)firstSegmentsBuffer[i]) - 1);
131         }
132         firstSegidx = 0;
133     }
134 
135     // We don't emit the first dash right away. If we did, caps would be
136     // drawn on it, but we need joins to be drawn if there's a closePath()
137     // So, we store the path elements that make up the first dash in the
138     // buffer below.
139     private float[] firstSegmentsBuffer = new float[7];
140     private int firstSegidx = 0;
141     // precondition: pts must be in relative coordinates (relative to x0,y0)
142     // fullCurve is true iff the curve in pts has not been split.
143     private void goTo(float[] pts, int off, final int type) {
144         float x = pts[off + type - 4];
145         float y = pts[off + type - 3];
146         if (dashOn) {
147             if (starting) {
148                 firstSegmentsBuffer = Helpers.widenArray(firstSegmentsBuffer,
149                                       firstSegidx, type - 2);
150                 firstSegmentsBuffer[firstSegidx++] = type;
151                 System.arraycopy(pts, off, firstSegmentsBuffer, firstSegidx, type - 2);
152                 firstSegidx += type - 2;
153             } else {
154                 if (needsMoveTo) {
155                     out.moveTo(x0, y0);
156                     needsMoveTo = false;
157                 }
158                 emitSeg(pts, off, type);
159             }
160         } else {
161             starting = false;
162             needsMoveTo = true;
163         }
164         this.x0 = x;
165         this.y0 = y;
166     }
167 
168     public void lineTo(float x1, float y1) {
169         float dx = x1 - x0;
170         float dy = y1 - y0;
171 
172         float len = (float) Math.sqrt(dx*dx + dy*dy);
173 
174         if (len == 0) {
175             return;
176         }
177 
178         // The scaling factors needed to get the dx and dy of the
179         // transformed dash segments.
180         float cx = dx / len;
181         float cy = dy / len;
182 
183         while (true) {
184             float leftInThisDashSegment = dash[idx] - phase;
185             if (len <= leftInThisDashSegment) {
186                 curCurvepts[0] = x1;
187                 curCurvepts[1] = y1;
188                 goTo(curCurvepts, 0, 4);
189                 // Advance phase within current dash segment
190                 phase += len;
191                 if (len == leftInThisDashSegment) {
192                     phase = 0f;
193                     idx = (idx + 1) % dash.length;
194                     dashOn = !dashOn;
195                 }
196                 return;
197             }
198 
199             float dashdx = dash[idx] * cx;
200             float dashdy = dash[idx] * cy;
201             if (phase == 0) {
202                 curCurvepts[0] = x0 + dashdx;
203                 curCurvepts[1] = y0 + dashdy;
204             } else {
205                 float p = leftInThisDashSegment / dash[idx];
206                 curCurvepts[0] = x0 + p * dashdx;
207                 curCurvepts[1] = y0 + p * dashdy;
208             }
209 
210             goTo(curCurvepts, 0, 4);
211 
212             len -= leftInThisDashSegment;
213             // Advance to next dash segment
214             idx = (idx + 1) % dash.length;
215             dashOn = !dashOn;
216             phase = 0;
217         }
218     }
219 
220     private LengthIterator li = null;
221 
222     // preconditions: curCurvepts must be an array of length at least 2 * type,
223     // that contains the curve we want to dash in the first type elements
224     private void somethingTo(int type) {
225         if (pointCurve(curCurvepts, type)) {
226             return;
227         }
228         if (li == null) {
229             li = new LengthIterator(4, 0.01f);
230         }
231         li.initializeIterationOnCurve(curCurvepts, type);
232 
233         int curCurveoff = 0; // initially the current curve is at curCurvepts[0...type]
234         float lastSplitT = 0;
235         float t = 0;
236         float leftInThisDashSegment = dash[idx] - phase;
237         while ((t = li.next(leftInThisDashSegment)) < 1) {
238             if (t != 0) {
239                 Helpers.subdivideAt((t - lastSplitT) / (1 - lastSplitT),
240                                     curCurvepts, curCurveoff,
241                                     curCurvepts, 0,
242                                     curCurvepts, type, type);
243                 lastSplitT = t;
244                 goTo(curCurvepts, 2, type);
245                 curCurveoff = type;
246             }
247             // Advance to next dash segment
248             idx = (idx + 1) % dash.length;
249             dashOn = !dashOn;
250             phase = 0;
251             leftInThisDashSegment = dash[idx];
252         }
253         goTo(curCurvepts, curCurveoff+2, type);
254         phase += li.lastSegLen();
255         if (phase >= dash[idx]) {
256             phase = 0f;
257             idx = (idx + 1) % dash.length;
258             dashOn = !dashOn;
259         }
260     }
261 
262     private static boolean pointCurve(float[] curve, int type) {
263         for (int i = 2; i < type; i++) {
264             if (curve[i] != curve[i-2]) {
265                 return false;
266             }
267         }
268         return true;
269     }
270 
271     // Objects of this class are used to iterate through curves. They return
272     // t values where the left side of the curve has a specified length.
273     // It does this by subdividing the input curve until a certain error
274     // condition has been met. A recursive subdivision procedure would
275     // return as many as 1<<limit curves, but this is an iterator and we
276     // don't need all the curves all at once, so what we carry out a
277     // lazy inorder traversal of the recursion tree (meaning we only move
278     // through the tree when we need the next subdivided curve). This saves
279     // us a lot of memory because at any one time we only need to store
280     // limit+1 curves - one for each level of the tree + 1.
281     // NOTE: the way we do things here is not enough to traverse a general
282     // tree; however, the trees we are interested in have the property that
283     // every non leaf node has exactly 2 children
284     private static class LengthIterator {
285         private enum Side {LEFT, RIGHT};
286         // Holds the curves at various levels of the recursion. The root
287         // (i.e. the original curve) is at recCurveStack[0] (but then it
288         // gets subdivided, the left half is put at 1, so most of the time
289         // only the right half of the original curve is at 0)
290         private float[][] recCurveStack;
291         // sides[i] indicates whether the node at level i+1 in the path from
292         // the root to the current leaf is a left or right child of its parent.
293         private Side[] sides;
294         private int curveType;
295         private final int limit;
296         private final float ERR;
297         private final float minTincrement;
298         // lastT and nextT delimit the current leaf.
299         private float nextT;
300         private float lenAtNextT;
301         private float lastT;
302         private float lenAtLastT;
303         private float lenAtLastSplit;
304         private float lastSegLen;
305         // the current level in the recursion tree. 0 is the root. limit
306         // is the deepest possible leaf.
307         private int recLevel;
308         private boolean done;
309 
310         // the lengths of the lines of the control polygon. Only its first
311         // curveType/2 - 1 elements are valid. This is an optimization. See
312         // next(float) for more detail.
313         private float[] curLeafCtrlPolyLengths = new float[3];
314 
315         public LengthIterator(int reclimit, float err) {
316             this.limit = reclimit;
317             this.minTincrement = 1f / (1 << limit);
318             this.ERR = err;
319             this.recCurveStack = new float[reclimit+1][8];
320             this.sides = new Side[reclimit];
321             // if any methods are called without first initializing this object on
322             // a curve, we want it to fail ASAP.
323             this.nextT = Float.MAX_VALUE;
324             this.lenAtNextT = Float.MAX_VALUE;
325             this.lenAtLastSplit = Float.MIN_VALUE;
326             this.recLevel = Integer.MIN_VALUE;
327             this.lastSegLen = Float.MAX_VALUE;
328             this.done = true;
329         }
330 
331         public void initializeIterationOnCurve(float[] pts, int type) {
332             System.arraycopy(pts, 0, recCurveStack[0], 0, type);
333             this.curveType = type;
334             this.recLevel = 0;
335             this.lastT = 0;
336             this.lenAtLastT = 0;
337             this.nextT = 0;
338             this.lenAtNextT = 0;
339             goLeft(); // initializes nextT and lenAtNextT properly
340             this.lenAtLastSplit = 0;
341             if (recLevel > 0) {
342                 this.sides[0] = Side.LEFT;
343                 this.done = false;
344             } else {
345                 // the root of the tree is a leaf so we're done.
346                 this.sides[0] = Side.RIGHT;
347                 this.done = true;
348             }
349             this.lastSegLen = 0;
350         }
351 
352         // 0 == false, 1 == true, -1 == invalid cached value.
353         private int cachedHaveLowAcceleration = -1;
354 
355         private boolean haveLowAcceleration(float err) {
356             if (cachedHaveLowAcceleration == -1) {
357                 final float len1 = curLeafCtrlPolyLengths[0];
358                 final float len2 = curLeafCtrlPolyLengths[1];
359                 // the test below is equivalent to !within(len1/len2, 1, err).
360                 // It is using a multiplication instead of a division, so it
361                 // should be a bit faster.
362                 if (!Helpers.within(len1, len2, err*len2)) {
363                     cachedHaveLowAcceleration = 0;
364                     return false;
365                 }
366                 if (curveType == 8) {
367                     final float len3 = curLeafCtrlPolyLengths[2];
368                     // if len1 is close to 2 and 2 is close to 3, that probably
369                     // means 1 is close to 3 so the second part of this test might
370                     // not be needed, but it doesn't hurt to include it.
371                     if (!(Helpers.within(len2, len3, err*len3) &&
372                           Helpers.within(len1, len3, err*len3))) {
373                         cachedHaveLowAcceleration = 0;
374                         return false;
375                     }
376                 }
377                 cachedHaveLowAcceleration = 1;
378                 return true;
379             }
380 
381             return (cachedHaveLowAcceleration == 1);
382         }
383 
384         // we want to avoid allocations/gc so we keep this array so we
385         // can put roots in it,
386         private float[] nextRoots = new float[4];
387 
388         // caches the coefficients of the current leaf in its flattened
389         // form (see inside next() for what that means). The cache is
390         // invalid when it's third element is negative, since in any
391         // valid flattened curve, this would be >= 0.
392         private float[] flatLeafCoefCache = new float[] {0, 0, -1, 0};
393         // returns the t value where the remaining curve should be split in
394         // order for the left subdivided curve to have length len. If len
395         // is >= than the length of the uniterated curve, it returns 1.
396         public float next(final float len) {
397             final float targetLength = lenAtLastSplit + len;
398             while(lenAtNextT < targetLength) {
399                 if (done) {
400                     lastSegLen = lenAtNextT - lenAtLastSplit;
401                     return 1;
402                 }
403                 goToNextLeaf();
404             }
405             lenAtLastSplit = targetLength;
406             final float leaflen = lenAtNextT - lenAtLastT;
407             float t = (targetLength - lenAtLastT) / leaflen;
408 
409             // cubicRootsInAB is a fairly expensive call, so we just don't do it
410             // if the acceleration in this section of the curve is small enough.
411             if (!haveLowAcceleration(0.05f)) {
412                 // We flatten the current leaf along the x axis, so that we're
413                 // left with a, b, c which define a 1D Bezier curve. We then
414                 // solve this to get the parameter of the original leaf that
415                 // gives us the desired length.
416 
417                 if (flatLeafCoefCache[2] < 0) {
418                     float x = 0+curLeafCtrlPolyLengths[0],
419                           y = x+curLeafCtrlPolyLengths[1];
420                     if (curveType == 8) {
421                         float z = y + curLeafCtrlPolyLengths[2];
422                         flatLeafCoefCache[0] = 3*(x - y) + z;
423                         flatLeafCoefCache[1] = 3*(y - 2*x);
424                         flatLeafCoefCache[2] = 3*x;
425                         flatLeafCoefCache[3] = -z;
426                     } else if (curveType == 6) {
427                         flatLeafCoefCache[0] = 0f;
428                         flatLeafCoefCache[1] = y - 2*x;
429                         flatLeafCoefCache[2] = 2*x;
430                         flatLeafCoefCache[3] = -y;
431                     }
432                 }
433                 float a = flatLeafCoefCache[0];
434                 float b = flatLeafCoefCache[1];
435                 float c = flatLeafCoefCache[2];
436                 float d = t*flatLeafCoefCache[3];
437 
438                 // we use cubicRootsInAB here, because we want only roots in 0, 1,
439                 // and our quadratic root finder doesn't filter, so it's just a
440                 // matter of convenience.
441                 int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
442                 if (n == 1 && !Float.isNaN(nextRoots[0])) {
443                     t = nextRoots[0];
444                 }
445             }
446             // t is relative to the current leaf, so we must make it a valid parameter
447             // of the original curve.
448             t = t * (nextT - lastT) + lastT;
449             if (t >= 1) {
450                 t = 1;
451                 done = true;
452             }
453             // even if done = true, if we're here, that means targetLength
454             // is equal to, or very, very close to the total length of the
455             // curve, so lastSegLen won't be too high. In cases where len
456             // overshoots the curve, this method will exit in the while
457             // loop, and lastSegLen will still be set to the right value.
458             lastSegLen = len;
459             return t;
460         }
461 
462         public float lastSegLen() {
463             return lastSegLen;
464         }
465 
466         // go to the next leaf (in an inorder traversal) in the recursion tree
467         // preconditions: must be on a leaf, and that leaf must not be the root.
468         private void goToNextLeaf() {
469             // We must go to the first ancestor node that has an unvisited
470             // right child.
471             recLevel--;
472             while(sides[recLevel] == Side.RIGHT) {
473                 if (recLevel == 0) {
474                     done = true;
475                     return;
476                 }
477                 recLevel--;
478             }
479 
480             sides[recLevel] = Side.RIGHT;
481             System.arraycopy(recCurveStack[recLevel], 0, recCurveStack[recLevel+1], 0, curveType);
482             recLevel++;
483             goLeft();
484         }
485 
486         // go to the leftmost node from the current node. Return its length.
487         private void goLeft() {
488             float len = onLeaf();
489             if (len >= 0) {
490                 lastT = nextT;
491                 lenAtLastT = lenAtNextT;
492                 nextT += (1 << (limit - recLevel)) * minTincrement;
493                 lenAtNextT += len;
494                 // invalidate caches
495                 flatLeafCoefCache[2] = -1;
496                 cachedHaveLowAcceleration = -1;
497             } else {
498                 Helpers.subdivide(recCurveStack[recLevel], 0,
499                                   recCurveStack[recLevel+1], 0,
500                                   recCurveStack[recLevel], 0, curveType);
501                 sides[recLevel] = Side.LEFT;
502                 recLevel++;
503                 goLeft();
504             }
505         }
506 
507         // this is a bit of a hack. It returns -1 if we're not on a leaf, and
508         // the length of the leaf if we are on a leaf.
509         private float onLeaf() {
510             float[] curve = recCurveStack[recLevel];
511             float polyLen = 0;
512 
513             float x0 = curve[0], y0 = curve[1];
514             for (int i = 2; i < curveType; i += 2) {
515                 final float x1 = curve[i], y1 = curve[i+1];
516                 final float len = Helpers.linelen(x0, y0, x1, y1);
517                 polyLen += len;
518                 curLeafCtrlPolyLengths[i/2 - 1] = len;
519                 x0 = x1;
520                 y0 = y1;
521             }
522 
523             final float lineLen = Helpers.linelen(curve[0], curve[1], curve[curveType-2], curve[curveType-1]);
524             if (polyLen - lineLen < ERR || recLevel == limit) {
525                 return (polyLen + lineLen)/2;
526             }
527             return -1;
528         }
529     }
530 
531     @Override
532     public void curveTo(float x1, float y1,
533                         float x2, float y2,
534                         float x3, float y3)
535     {
536         curCurvepts[0] = x0;        curCurvepts[1] = y0;
537         curCurvepts[2] = x1;        curCurvepts[3] = y1;
538         curCurvepts[4] = x2;        curCurvepts[5] = y2;
539         curCurvepts[6] = x3;        curCurvepts[7] = y3;
540         somethingTo(8);
541     }
542 
543     @Override
544     public void quadTo(float x1, float y1, float x2, float y2) {
545         curCurvepts[0] = x0;        curCurvepts[1] = y0;
546         curCurvepts[2] = x1;        curCurvepts[3] = y1;
547         curCurvepts[4] = x2;        curCurvepts[5] = y2;
548         somethingTo(6);
549     }
550 
551     public void closePath() {
552         lineTo(sx, sy);
553         if (firstSegidx > 0) {
554             if (!dashOn || needsMoveTo) {
555                 out.moveTo(sx, sy);
556             }
557             emitFirstSegments();
558         }
559         moveTo(sx, sy);
560     }
561 
562     public void pathDone() {
563         if (firstSegidx > 0) {
564             out.moveTo(sx, sy);
565             emitFirstSegments();
566         }
567         out.pathDone();
568     }
569 
570     @Override
571     public long getNativeConsumer() {
572         throw new InternalError("Dasher does not use a native consumer");
573     }
574 }
575